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Abstract

Historically, climate models have been developed incrementally and in compiled lan-
guages like Fortran. While the use of legacy compiled languages results in fast, time-
tested code, the resulting model is limited in its modularity and cannot take advantage
of functionality available with modern computer languages. Here we describe an ef-5

fort at using the open-source, object-oriented language Python to create more flexible
climate models: the package qtcm , a Python implementation of the intermediate-level
Neelin-Zeng Quasi-Equilibrium Tropical Circulation model (QTCM1) of the atmosphere.
The qtcm package retains the core numerics of QTCM1, written in Fortran to optimize
model performance, but uses Python structures and utilities to wrap the QTCM1 For-10

tran routines and manage model execution. The resulting “mixed language” modeling
package allows order and choice of subroutine execution to be altered at run time, and
model analysis and visualization to be integrated in interactively with model execution
at run time. This flexibility facilitates more complex scientific analysis using less com-
plex code than would be possible using traditional languages alone, and provides tools15

to transform the traditional “formulate hypothesis → write and test code → run model
→ analyze results” sequence into a feedback loop that can be executed automatically
by the computer.

1 Introduction

Although early weather and climate models, beginning with Richardson’s “Forecast20

Factory” in 1922 (Edwards, 2000), led the development of the field of scientific com-
puting, over the past few decades, climate models have not, in general, kept up with
advances in computing languages and structures. Many climate models are still written
in compiled languages (primarily Fortran), and utilize the same programming structures
familiar to a Fortran programmer of the 1970’s. On the positive side, this continued re-25

liance on Fortran results in very fast code that runs on almost all platforms, the ability

316

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
1, 315–344, 2008

A Python
implementation of

QTCM1

J. W.-B. Lin

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

to reuse legacy code, and the availability of well-tested libraries, which have been op-
timized over decades of use.

At the same time, the continued development of climate models in Fortran has made
it difficult to take advantage of advances in programming languages that increase the
modularity and robustness of scientific code. Being mainly a procedural language,5

Fortran lacks the default programming structures to organize a model into truly self-
contained units, thus limiting modularity. Fortran subroutine function calls may utilize
long and unwieldy argument lists, its default variables are not self-describing, and vari-
ables exist in a loosely controlled namespace; this can result in brittle code where
undetectable errors easily propagate. Finally, as a compiled language, Fortran is non-10

interactive, which hinders informal small-scale testing and prevents users from interact-
ing with the model at run time. Recent versions of Fortran have added some of these
modern features to the language, but scientific programs, in general, make limited use
of these new features.

Modern computer languages have constructs that overcome many of these difficul-15

ties, though at a penalty in performance. These languages possess the tools to man-
age the variable namespace that older procedural languages lack, and thus modern
languages can avoid lengthy hard-wired argument lists through the use of dictionaries
and the creation of specialty data structures and classes that ensure the right vari-
ables are available and used when needed. Modern object-oriented frameworks bind20

metadata to variables, as well as the functions that act on the variables. Such contex-
tualized variables make possible additional levels of modular decomposition. Object-
oriented programming can also produce code of higher quality (e.g., Johnson, 2002),
that more closely emulates real-world entities (e.g., Pennington et al., 1995). Some
modern languages are also interpreted; in those languages, source code is directly25

executed without a separate compile step, thereby enabling interactive debugging and
execution.

One such modern language is Python (van Rossum, 2008), an interpreted, object-
oriented, multi-platform, open-source language used in a variety of software appli-
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cations, including as a robust scientific computing platform (Oliphant, 2007). In cli-
mate studies, Python has been used as the core language for data analysis (e.g.,
PCMDI, 2006), visualization (e.g., Hunter and Dale, 2008), and modeling (e.g., Py-
CCSM, 2008). Python’s object-orientation and higher-level data structures and tools
(e.g., dictionaries, string and file utilities) permits numerous ways of decomposing a5

model into modular units. Its extensive suite of higher-level analysis tools (e.g., statis-
tics, visualization), accessible at run time, enables modeling and analysis to occur
concurrently. As an interpreted language, Python’s lack of a separate compile step
greatly simplifies debugging and testing, and permits changes in the program to be
made at run time.10

Thus, while it is more difficult to write robust code in compiled languages, the code is
usually very fast. Modern languages, however, while producing much more robust and
stable code, exact a cost in performance. Naturally, we want the best of both worlds,
both speed and simplicity: “mixed language” environments (Oliphant, 2007) are the
solution. In such an environment, the user-interface and calling infrastructure of the15

model is written in a modern language while the performance sensitive code is written
in a compiled language. A wrapper generator automatically creates extension modules
(as shared object libraries) of the compiled language modules, making them accessible
to the modern language. A number of wrapper generator packages exist for Python,
including f2py (Peterson, 2005) which wraps Fortran modules, and SWIG (Beazley,20

1997) which wraps C/C++ code.
In the present work, we describe a Python implementation of an intermediate-level

atmospheric circulation model originally written in Fortran. By wrapping the Fortran
code within a Python object structure, the package, qtcm , provides a modular and
interactive model where the user can alter order and choice of subroutine execution,25

and analyze and visualize model results, all dynamically at run time. The result is a
climate modeling environment that can transform parts of the “formulate hypothesis →
write and test code → run model → analyze results” sequence into a feedback loop
that can be executed automatically by the computer.
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Section 2 briefly describes the the Neelin-Zeng Quasi-Equilibrium Tropical Circula-
tion Model (QTCM1). In Sect. 3, we describe the construction of a Python implemen-
tation of QTCM1, the qtcm package. Section 4 gives examples of the use of the qtcm
package, which illustrate the benefits of a mixed language environment for climate
modeling. We finish with discussion and conclusions in Sect. 5.5

2 The Neelin-Zeng QTCM1

The QTCM1 is a primitive equation-based intermediate-level atmospheric model that
focuses on simulating the tropical atmosphere (Neelin et al., 2002). Being more com-
plicated than a simple model, the model retains full non-linearity with a basic represen-
tation of baroclinic instability, includes a radiative-convective feedback package, and10

includes a simple land soil moisture routine (but does not include topography). The
QTCM1 has been used in a variety of studies, including investigations of Madden-Julian
oscillation maintenance mechanisms (Lin et al., 2000), stochastic convective param-
eterization (Lin and Neelin, 2000, 2002), El Niño-Southern Oscillation teleconnection
patterns (Gushchina et al., 2006), and vegetation-atmosphere interactions (Zeng et al.,15

1999).
QTCM1 differs from most full-scale general circulation models (GCMs) in that the

vertical temperature, humidity, and velocity structures of the atmosphere are repre-
sented by a truncated Galerkin expansion in the vertical, instead of finite-differenced
pressure levels. The vertical basis functions of the expansion are chosen based on20

analytical solutions under convective quasi-equilibrium conditions, and thus in the trop-
ics, where convective quasi-equilibrium effects dominate, the solution is asymptotically
exact. Away from the tropics, the model behaves as a two-layer model. In principle,
a Galerkin model can have any number of baroclinic basis functions accompanying its
barotropic basis: QTCM1 has a single baroclinic mode, and hence the “1” in its name.25

In the horizontal, the model discretizes the domain using a staggered Arakawa C-grid
(Mesinger and Arakawa, 1976) and a default resolution of 5.625◦ longitude by 3.75◦
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latitude.
By using tailored vertical profiles, the QTCM1 delivers reasonable simulations of the

tropics at a fraction of the computational cost of a full-scale GCM. Its relative sim-
plicity also makes it far easier to diagnose than a full-scale GCM, potentially result-
ing in greater understanding and comprehension of model results. Neelin and Zeng5

(2000) presents a comprehensive description of the model’s formulation, and Zeng
et al. (2000) describes the model’s climatology. Neelin and Zeng (2000) is based upon
v2.0 of QTCM1 and Zeng et al. (2000) is based on QTCM1 v2.1. The qtcm package
is based on QTCM1 v2.3.

3 The Python qtcm package10

The qtcm package is an implementation of QTCM1 in a Python-based object-
oriented modeling framework, using f2py to create extension module versions of
the Fortran modules (as shared object libraries). At the package home page http:
//www.johnny-lin.com/py pkgs/qtcm/, the most recent version of the full source code
and a comprehensive user’s guide is available for download. The User’s Guide15

and source code for the version of the model described in the present work is
available as a supplement at http://www.geosci-model-dev-discuss.net/1/315/2008/
gmdd-1-315-2008-supplement.zip, and are covered by licenses separate from the
present work. The User’s Guide (Lin, 2008) provides detailed information regarding
installing, using, troubleshooting, and adding code to the package. In the present20

work, we provide an overview of qtcm ’s structure and function. Parts of this section
are copied and/or adapted from Lin (2008).

3.1 Package and model structure

The qtcm package consists of two shared object libraries and four main submodules.
The two shared object libraries are compiled and generated by f2py during pack-25
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age installation, and will not need to be recompiled prior to model execution. The
defaults submodule defines various defaults for the model, the field submodule
defines class Field (described later), the plot submodule defines routines used for
quick visualization of model results, and the qtcm submodule defines the class Qtcm
(also described later).5

A model in the qtcm package is defined as an instance of the class Qtcm. Because
the qtcm package wraps Fortran routines with a Python layer, there are two types of
variables associated with Qtcm model instances: those defined at the Python-level and
those defined at the Fortran-level. Some variables, while defined separately at both the
Python and Fortran levels (i.e., they do not share the same memory space), have the10

same names and functions in both levels of the model. Those variables are known as
“field variables” and are considered to be defined at both the Python-level and Fortran-
level (an example of such a variable is Qc, the precipitation). Qtcm instances have
public methods (get qtcm1 item and set qtcm1 item ) for passing the values of
field variables back-and-forth between the Python and Fortran levels.15

All field variables and most model parameters (such as time step, input and output
directory names, etc.) are instances of the Field class. A Field instance stores
the value of the variable in an attribute named value , and metadata related to the
variable as other instance attributes. If the value of the field variable is an array, the
value stored in the attribute value is a NumPy (van der Walt, 2008) array. Only the20

value of a Field instance can be passed to its Fortran counterpart (when it exists),
because standard Fortran variables cannot hold metadata. All model parameters are
attributes of Qtcm instances. Field variables, at the Python-level, are also Qtcm in-
stance attributes. Model parameter and field variable values can be passed into the
model instance on instantiation via the input keyword parameter list, or set after instan-25

tiation by changing the instance attribute. If these parameters and variables are not
set manually, they are set to default values given in the defaults submodule. Table 1
lists the key instance attributes and methods for the Field and Qtcm classes.
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3.2 Creating a model instance and running the model

Figure 1 shows a simple example of a model instance being created and run.
Model instances are created using standard Python syntax; in Fig. 1, model =
Qtcm( ** inputs) creates a model instance model . In this example, we make use
of a feature in Python where keyword parameter argument lists can be passed in as5

a dictionary, where the dictionary’s keys correspond to the names of the keyword pa-
rameters, and the associated value in the dictionary corresponds to the input value
of the keyword parameter; the variable inputs is such a dictionary. Based on the
values of inputs shown in Fig. 1, the model instance is configured to make an aqua-
planet run (set by landon ), starting from November 1, Year 1 (set by year0 , month0 ,10

and day0 ), running for 30 days (set by lastday ) from a newly initialized model state
(set by mrestart ). The model’s netCDF (Unidata, 2007) output filenames will contain
the string given by runname . By default, the model uses climatological sea-surface
temperatures (SST) for the lower-boundary forcing over the ocean.

The keyword compiled form defines which of the two types of Fortran exten-15

sion modules, derived from the Fortran QTCM1 code, the model instance will link
to. The first type permits very little control over the compiled Fortran routines at
the Python level, and is selected by setting compiled form = ’full’ . The sec-
ond allows a user, from the Python-level, to control model execution in the Fortran-
level all the way down to the atmospheric timestep level. This extension module20

is selected by setting compiled form = ’parts’ . In general, most users will set
compiled form = ’parts’ , and thus we assume this setting for the rest of the
present work. See Lin (2008) for details about this keyword.

Once the model has been instantiated, running the model requires just a call of the
run session method. In most cases, no input parameters need to be passed at this25

call. In Fig. 1, this is given in the last line. At the beginning and end of the run session
call, the values of all field variables at the Python and Fortran levels are synchronized
to match each other.
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3.3 Run sessions

Once we instantiate and configure a model instance, we can use the instance for any
number of runs. We call each of these runs using the same model instance a “run
session.” In a run session, the model is run from day 1 of simulation to the day specified
by the lastday attribute. A run session is a “complete” model run, at the beginning5

of which all Fortran-level field variables are set to the values given at the Python-level,
and at the end of which restart files are written, the values at the Python-level are
overwritten by the values from the Fortran-level, and a Python-accessible snapshot is
taken of the model variables that were written to the restart file.

Before and after a run session, model variables are easily accessed from the Python10

level, and can be changed at will just by changing the value of the pertinent model
instance attribute. The new values can then be used at the next run session of the
model instance. To continue a second run session after an initial run session, set the
keyword parameter cont in the input list of a run session method call.

Figure 2 gives an example of two run sessions, where the second run session is a15

continuation of the first, and with changes made to a field variable between the two run
sessions. The first run session lasts 10 days, and is given by the setting of the lastday
keyword parameter. Between these run sessions, the value of field variable u1 (the
zonal wind associated with the first baroclinic mode) is doubled, and this doubled value
is used in the second run session. The second run session lasts 30 days.20

The change between the two run sessions in the simple example given in Fig. 2 is
uninteresting, but the example illustrates how the qtcm Python framework opens up
possibilities of interactive analysis with the model. Because Python is an interpreted
language, the code in Fig. 2 does not have to be written in a file, compiled, linked,
and executed; the code can be typed in during run time. Between run sessions, we25

can conduct and visualize more complex analyses of the model, and use the results of
those analyses to change the model configuration for the next run session. And since
Python is a complete programming language, we can also automate these analyses,
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without leaving the modeling environment. The important benefits of this feature are
described in Sect. 4.

3.4 Passing restart snapshots between run sessions

Sometimes, we want to branch a number of model runs from the same starting point.
The QTCM1 writes restart files for that purpose, and a Qtcm instance can also make5

use of those files by setting the mrestart attribute accordingly. This restart mecha-
nism is straightforward to use, but becomes difficult to manage when many restart files
are involved.

The qtcm package provides a way to take, store, and apply restart snapshots at
the Python-level, by storing a snapshot as a dictionary. At the end of a run ses-10

sion, a snapshot of the model state is automatically taken and stored as the in-
stance attribute snapshot . You can store this attribute as another Python variable
for later use. Figure 3 shows an example of saving the model snapshot as the vari-
able mysnapshot , and using that snapshot to initialize a later run session. The
method sync set py values to snapshot initializes the model to the values of15

mysnapshot , and setting the attribute init with instance state to True prior to
calling run session the second time will force the model to use the current instance
state as the run session’s initial values.

3.5 Creating multiple models

Creating multiple QTCM1 Fortran models requires maintaining and operating on dif-20

ferent sets of source code, as well as compiling each set of source code separately
to obtain the desired multiple executables. With the qtcm package, creating multiple
models is as easy as instantiating multiple Qtcm instances. For instance, to create two
Python QTCM1 models, model1 and model2 , just enter in the following:
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from qtcm import Qtcm
model1 = Qtcm( ** inputs1)
model2 = Qtcm( ** inputs2)

where inputs1 and inputs2 are separate dictionaries specifying the input key-
word parameters. Note that model1 and model2 do not have any variables in com-
mon, including in the extension modules holding the Fortran code, and thus the two
instances are two truly independent models. Each instance automatically links to a5

separate copy of the extension modules, which are saved in temporary directories.

3.6 Passing restart snapshots between multiple models

In Sect. 3.4, we saw how a model snapshot can be saved to a separate variable and
used to initialize a later run session. Of course, since mysnapshot is an independent
dictionary, we are not limited to using it only with the model instance the snapshot10

originally came from. Figure 4 shows an example of using a snapshot to initialize run
sessions in multiple models.

3.7 Run lists

Of all the features the Python infrastructure enables us to create in our wrapping of the
QTCM1 model, run lists may be the most valuable. A run list in the qtcm package is a15

Python list that specifies a series of Python or Fortran methods, functions, subroutines
(or other run lists) that will be executed when the list is passed into a call of the Qtcm
instance method run list . Since routines in run lists are identified by strings (instead
of, for instance, as a memory pointer to a library archive object file), and Python lists
are mutable, run lists are full changeable at run time. As a result, what routines the20

model executes are also fully changeable at run time.
Run lists are stored in a dictionary set to the Qtcm instance attribute runlists . The

dictionary key for the run list’s entry is the run list name. Figure 5 shows an interactive
Python session that prints out the contents of run list ’atm physics1’ . This run list
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specifies the set of routines used to execute to calculate atmospheric physics at one
instant in time. Each entry of the list is a string and refers to the name of the wrapped
Fortran routine that calculates moist convection, cloud effects, shortwave radiative flux,
longwave radiative flux, and surface fluxes, respectively. To change the order of the
calculation, or to add, delete, or replace the routines being called, just change the5

elements of the list using any of the list methods provided by Python (e.g., append ).
In Fig. 5, all the routines given in the run list are Fortran subroutines and require no

parameters to be passed in via an argument list. Run lists can, however, specify Python
functions and methods and other run lists. For both Python and Fortran routines, the
run list feature can also accommodate routines that have argument lists. Figure 610

shows the run list for initializing the atmospheric portion of the model. The first two
routines executed by the run list are Fortran subroutines without any input parameters.
The third is the Qtcm instance method varinit , also without input parameters in the
calling argument list. The fourth element of the run list is a Fortran subroutine, but with
one input parameter in its calling argument list. The final routine is not a routine at15

all, but another run list. Regardless of what kind of routine or run list is specified, the
specification is still the same: a string or a one-element dictionary with a string as the
key. Lin (2008) gives details about run lists.

3.8 Output and visualization

The Qtcm model instance writes instantaneous and mean output to netCDF files. The20

netCDF data format is a platform independent binary format that permits metadata to
be saved with the data. There are a number of packages for Python that can read and
manipulate netCDF data, such as the Climate Data Analysis Tools (PCMDI, 2006).

The Matplotlib package (Hunter and Dale, 2008) for Python generates 1-D and 2-D
plots using Matlab-like syntax. Qtcm instances have a method plotm which reads25

the netCDF output files and uses Matplotlib to create line or contour plots of user-
specified slices of the data. Figure 7 shows an interactive modeling session with the
qtcm package where the user has created visualizations of a variety of parameters at
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run time.

3.9 Model performance

Because the model’s core numerics are written in Fortran, with Python providing a so-
phisticated programmer/user-interface, the performance penalty of the qtcm package
(with compiled form = ’parts’ ), compared to the pure-Fortran QTCM1 is approxi-5

mately 4–9% (the penalty for compiled form = ’full’ is less). Table 2 gives wall-
clock values for qtcm running on two platforms, Mac OS X and Ubuntu GNU/Linux.

4 Example uses of the qtcm package

By wrapping the Fortran QTCM1 with a Python layer, the qtcm package permits us
to accomplish science tasks that would otherwise require a labyrinthine set of shell10

scripts, temporary input and output files, and source code versions. In this section, we
describe a few such science tasks to illustrate what the Python wrapping buys us. The
examples in this section are taken from Lin (2008).

4.1 Conditionally explore parameter space

Figure 8 provides an example of code that explores different values of mixed-layer15

depth (ziml ) over a set of 30 day runs, as a function of maximum zonal wind asso-
ciated with the first baroclinic mode (u1) magnitude, until it finds a case where the
maximum of u1 is greater than 10 m/s. (The relationship between ziml and the maxi-
mum of the speed of u1 , where ziml = 0.1 * maxu1, is made up.) With each iteration,
the new run uses the snapshot from a previous run as its initialization (as well as the20

new value of ziml ); the try statement is used to ensure the model works even if
mysnapshot is not defined (which is the case the first time around).

If we implemented this science task using the pure-Fortran QTCM1 and shell scripts,
we would probably have to write a separate program (possibly in a separate data anal-
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ysis language like IDL, Matlab, or NCL) to analyze model output. Required param-
eters might be passed through an operating system pipe, or through namelists and
temporary files. Automating modeling with analysis in such an environment can be
difficult, limited, and error prone. The qtcm package allows us to take advantage of
Python’s numerical computing capabilities so that we can embed our traverse of param-5

eter space within a while loop, thus automating the analysis task within the modeling
environment.

4.2 Test alternative parameterizations

Figure 9 demonstrates the following scenario: Assume we have nine different cloud
physics schemes we wish to test in nine different runs. The easiest way to do this is10

to take advantage of Python’s object-oriented inheritance capabilities, creating a new
class NewQtcm that inherits everything from Qtcm, and to which we add the additional
cloud schemes (cloud0 , cloud1 , etc.). In the for loop in Fig. 9, we change the cloud
model run list entry in the ’atm physics1’ run list to whatever the cloud model is at
this point in the loop.15

Of course, we could do the same thing by running the nine models separately, but
this set-up makes it easy to do hypothesis testing between these nine models as the
models are running. For instance, we can create a test by which we will choose which
of the nine models to use: Within this framework, the selection of those models can
be altered by changing a string. If the same task were implemented with shell scripts20

and makefiles, we would have to write our own selector routines (perhaps using file
system functions) for selecting model(s) from amongst the possible executables. It is
much easier to use Python’s built-in string manipulation routines.
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5 Discussion and conclusions

In the present work, an intermediate-level atmosphere model written in Fortran is
wrapped with an object-oriented structure written in Python, which makes modern data
abstraction utilities available to a model written in a traditional procedural language.
The result is a model that can be used dynamically at run time, with the user able to5

change the order of subroutine execution at will, and able to analyze model results
within the modeling environment.

This flexibility, however, provides more than just convenience for the user. The qtcm
package’s run time-interactive tools, and tools like them, can transform the traditional
analysis sequence used in modeling studies into a sequence with more capabilities.10

The traditional sequence begins with formulation of a hypothesis, then leads to imple-
menting a test of the hypothesis in model code, making model runs using the coded
test, and ends with analyzing the model results using various statistical and visualiza-
tion packages (Fig. 10a). Some transitions between the various steps mainly make use
of human input (e.g., from hypothesis to code), while others combine human reason-15

ing with computational tools (e.g., we can mostly automate the transition from code to
model runs through the use of makefiles combined with shell scripts). The feedback
part of the cycle, where analysis of the results modifies the original hypothesis, usually
requires human input.

In contrast, the tools provided by qtcm and similar packages open up the potential20

to automate substantially larger portions of the analysis sequence. Figure 10b shows
a schematic of how model analysis might be transformed. Instead of being limited to
a few hypotheses, the transformed sequence makes additional types of hypothesis ac-
cessible without changing the complexity of the code required (see Sect. 4’s examples
as illustrations). Most importantly, the Fig. 10b sequence enables model output analy-25

sis to automatically control future model runs. Instead of requiring human intervention
to determine future model runs, the computer can make that evaluation, and as a re-
sult, for the same complexity of code, we can more intelligently explore the problem’s
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solution space.
Thus, though the use of mixed language programming environments for climate mod-

eling has a modest cost in performance, these environments have the potential the
pay back substantial dividends in code simplicity, reliability, and ease-of-use. More
importantly, such an environment, by providing a robust programming interface with5

capabilities traditional languages cannot easily support, gives researchers the tools
to investigate previously inaccessible (or difficult to access) questions. The wrapping
techniques illustrated in the present study for the Neelin-Zeng QTCM1 may be fruitfully
deployed to other climate models, increasing their flexibility and scientific usefulness.
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Table 1. Key public instance attributes and methods for Field and Qtcm instances. Note that
for Qtcm instances, field variables are also attributes, with attribute names corresponding to
the ids of the fields.

Class Type Name and Description

Field Attributes id : A string naming the model parameter or field variable (e.g., “Qc”,
“mrestart”).
value : The value of the field.
units : A string giving the units of the field.
long name: A string giving a description of the field.

Methods rank : Returns the rank of value .
typecode : Returns the typecode of value .

Qtcm Attributes compiled form : Describes the form of the compiled Fortran version
of the QTCM1 model.
coupling day : Current value of the atmosphere-ocean coupling day.
init with instance state : Initialize run session with the Qtcm
model instance state.
runlists : Lists of methods and other run lists that can be executed
by the run list method.
sodir : Name of temporary directory containing shared object files for
this Qtcm instance.

Methods get qtcm1 item : Get field from the compiled QTCM1 model.
make snapshot : Make copy of the current state of the run session’s
variables.
plotm : Plot mean output for a given model field.
qtcm : Run the atmosphere over a coupling interval step.
run list : Run run list(s) and/or instance methods.
run session : Run a model run session.
set qtcm1 item : Set Python-accessible compiled QTCM1 model
fields.
sync set py values to snapshot : Set Python attributes to a pre-
vious make snapshot output.
varinit : Initialize model variables in a run session.
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Table 2. Wall-clock times (sec) for the average of three 365 day aquaplanet runs using climato-
logical sea surface temperature as the lower boundary forcing (Lin, 2008). The “Pure” column
refers to runs using the pure-Fortran QTCM1, while “Wrap” refers to the Python wrapped qtcm
package (v0.1.1) with compiled form = ’parts’ .

System Pure Wrap

Mac OS X: MacBook 1.83 GHz Intel Core Duo running
Mac OS X 10.4.10.

152.59 158.94

Ubuntu GNU/Linux: Dell PowerEdge 860 with 2.66 GHz
Quad Core Intel Xeon processors (64 bit) running Ubuntu
8.04.1 LTS.

43.73 47.45

334

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
1, 315–344, 2008

A Python
implementation of

QTCM1

J. W.-B. Lin

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

from qtcm import Qtcm
inputs = {}
inputs[’runname’] = ’test’
inputs[’landon’] = 0
inputs[’year0’] = 1
inputs[’month0’] = 11
inputs[’day0’] = 1
inputs[’lastday’] = 30
inputs[’mrestart’] = 0
inputs[’compiled form’] = ’parts’
model = Qtcm( ** inputs)
model.run session()

Fig. 1. A simple qtcm run.
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inputs[’year0’] = 1
inputs[’month0’] = 11
inputs[’day0’] = 1
inputs[’lastday’] = 10
inputs[’mrestart’] = 0
inputs[’compiled form’] = ’parts’

model = Qtcm( ** inputs)
model.run session()
model.u1.value = model.u1.value * 2.0
model.init with instance state = True
model.run session(cont=30)

Fig. 2. An example of two qtcm run sessions where the second run session is a continuation
of the first. Assume inputs is a dictionary as in Fig. 1, and that earlier in the script the run
name and all input and output directory names were added to the dictionary.
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model.run session()
mysnapshot = model.snapshot
model.sync set py values to snapshot(snapshot=mysnapshot)
model.init with instance state = True
model.run session()

Fig. 3. An example of using a snapshot from one qtcm run session as the restart for a second
run session.

337

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
1, 315–344, 2008

A Python
implementation of

QTCM1

J. W.-B. Lin

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

model.run session()
mysnapshot = model.snapshot
model1.sync set py values to snapshot(snapshot=mysnapshot)
model2.sync set py values to snapshot(snapshot=mysnapshot)
model1.run session()
model2.run session()

Fig. 4. An example of using a snapshot from one qtcm run session as the restart for run
sessions in multiple other model instances.
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>>> from qtcm import Qtcm
>>> model = Qtcm(compiled form=’parts’)
>>> print model.runlists[’atm physics1’]
[’ qtcm.wrapcall.wmconvct’, ’ qtcm.wrapcall.wcloud’,
’ qtcm.wrapcall.wradsw’,
’ qtcm.wrapcall.wradlw’, ’ qtcm.wrapcall.wsflux’ ]

Fig. 5. Contents of run list ’atm physics1’ , the set of routines to execute to calculate atmo-
spheric physics at one instant in time, as displayed during a Python interpreter session.
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>>> from qtcm import Qtcm
>>> model = Qtcm(compiled form=’parts’)
>>> print model.runlists[’qtcminit’]
[’ qtcm.wrapcall.wparinit’, ’ qtcm.wrapcall.wbndinit’, ’varinit’,
{’ qtcm.wrapcall.wtimemanager’: [1] }, ’atm physics1’ ]

Fig. 6. Contents of run list ’qtcminit’ , the set of routines to execute to initialize the atmo-
spheric portion of the model, as displayed during a Python interpreter session.
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J. W.-B. Lin: A Python Implementation of QTCM1 9

Fig. 7. Screenshot of an interactive modeling session using the qtcm package. The upper-left panel shows the source code file specifying
the run. The lower-right panel shows the Python interpreter session making the run. The two plot windows display the plots generated by
the plotm calls from the Python interpreter command line.

import os
import numpy as N
maxu1 = 0.0
while maxu1 < 10.0:

iziml = 0.1 * maxu1
iname = ’ziml-’ + str(iziml) + ’m’
ipath = os.path.join(’proc’, iname)
os.makedirs(ipath)
model = Qtcm(**inputs)
try:

model.sync set py values to snapshot(snapshot=mysnapshot)
model.init with instance state = True

except:
model.init with instance state = False

model.ziml.value = iziml
model.runname.value = iname
model.outdir.value = ipath
model.run session()
maxu1 = N.max(N.abs(model.u1.value))
mysnapshot = model.snapshot
del model

Fig. 8. Example of an exploration of the effects of different values of mixed-layer depth. The inputs dictionary is initialized similarly as
in Fig. 1.

Fig. 7. Screenshot of an interactive modeling session using the qtcm package. The upper-left
panel shows the source code file specifying the run. The lower-right panel shows the Python
interpreter session making the run. The two plot windows display the plots generated by the
plotm calls from the Python interpreter command line.
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import os
import numpy as N
maxu1 = 0.0
while maxu1 < 10.0:

iziml = 0.1 * maxu1
iname = ’ziml-’ + str(iziml) + ’m’
ipath = os.path.join(’proc’, iname)
os.makedirs(ipath)
model = Qtcm( ** inputs)
try:

model.sync set py values to snapshot(snapshot=mysnapshot)
model.init with instance state = True

except:
model.init with instance state = False

model.ziml.value = iziml
model.runname.value = iname
model.outdir.value = ipath
model.run session()
maxu1 = N.max(N.abs(model.u1.value))
mysnapshot = model.snapshot
del model

Fig. 8. Example of an exploration of the effects of different values of mixed-layer depth. The
inputs dictionary is initialized similarly as in Fig. 1.
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import os

class NewQtcm(Qtcm):
def cloud0(self):

[...]
def cloud1(self):

[...]
def cloud2(self):

[...]
[...]

inputs[’init with instance state’] = False
for i in xrange(10):

iname = ’cloudroutine-’ + str(i)
ipath = os.path.join(’proc’, iname)
os.makedirs(ipath)
model = NewQtcm( ** inputs)
model.runlists[’atm physics1’][1] = ’cloud’ + str(i)
model.runname.value = iname
model.outdir.value = ipath
model.run session()
del model

Fig. 9. Example of using inheritance in Python to explore the effects of multiple cloud physics
schemes in multiple runs. The [...] denote the code of the different (hypothetical) cloud
physics schemes. The inputs dictionary is defined similarly as in Fig. 1.
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(a)

Hypothesis  Analysis Model Runs Code Human 
Input 

(b)

More 
Hypothesis  

Analysis Model Runs Code 
Computer 

Fig. 10. Schematic of (a) the traditional analysis sequence used in modeling studies, and (b)
the transformed analysis sequence using qtcm -like modeling tools. Outlined arrows with no
fill represent mainly human input. Gray-filled arrows represent a mix of human and computer-
controlled input. Completely filled (black)-arrows represent purely computer-controlled input.
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